Soluzioni del Tutorato di Statistica 1 del 15/11/2010

Docente: Prof.ssa Enza Orlandi

Tutore: Dott.ssa Barbara De Cicco

Esercizio 1.

Sia $X_1, ..., X_n$ un campione casuale dalla distribuzione Poissoniana di

1. Determinare la funzione generatrice dei momenti e la distribuzione di $S = \sum_{i=1}^{n} X_i$.

 $m_X(t) = E[e^{tX}] = \sum_{i=1}^n e^{tx} \frac{e^{-\lambda} \lambda^x}{x!} = e^{\lambda(e^t - 1)}$ $S = \sum_{i=1}^{n} X_i$ quindi $S \sim Po(n\lambda)$ da cui $E[e^{tS}] = e^{n\lambda(e^t-1)}$.

- 2. Si calcoli lo stimatore per λ con il metodo dei momenti. $\mu'_1 = \lambda \ e \ M'_1 = \bar{X} \ da \ cui \ otteniamo \ che \ T_{\hat{\theta}} = \bar{X}.$
- 3. Si calcoli lo stimatore di massima verosimiglianza per λ .

 $L(\lambda) = \prod_{i=1}^{n} f(x_i, \lambda) = \prod_{i=1}^{n} \frac{e^{-\lambda} \lambda_i^x}{x_i!} = \frac{e^{-n\lambda} \lambda_i^{\sum_{i=1}^{n} X_i}}{\prod_{i=1}^{n} x_i!}$ Passando al logaritmo si ottiene:

Passando al logaritmo si ottlene:
$$log L(\lambda) = -n\lambda + \sum_{i=1}^n x_i log(\lambda) - log \prod_{i=1}^n x_i!$$
 derivando in λ si ha:
$$-n\lambda + \frac{\sum_{i=1}^n x_i}{\lambda} = 0 \text{ da cui otteniamo che } \hat{\lambda} = \frac{\sum_{i=1}^n x_i}{\lambda} = \bar{X}.$$

4. Trovare una statistica sufficiente.

Poichè la distribuzione di Poisson appartiene alla famiglia espo-

$$L(\lambda) = \prod_{i=1}^{n} f(x_i, \lambda) = e^{-n\lambda} e^{\sum_{i=1}^{n} x_i \log \lambda} \prod_{i=1}^{n} \frac{1}{n!}$$

nenziale, infatti si può scrivere come: $L(\lambda) = \prod_{i=1}^n f(x_i,\lambda) = e^{-n\lambda} e^{\sum_{i=1}^n x_i log \lambda} \prod_{i=1}^n \frac{1}{x!}$ Si ha quindi che $S = \sum_{i=1}^n X_i$ è una statistica sufficiente.

5. Determinare un UMVUE di λ .

Dalla disuguaglianza di Cramer-Rao si ottiene:

$$Var[T] \ge \frac{(\tau'\lambda)^2}{nE[(\frac{\partial}{\partial\lambda}logf(x,\lambda))^2]} = \frac{1}{nE[(-1+\frac{X}{\lambda})]} = \frac{1}{nE[1+\frac{X^2}{\lambda^2}-\frac{2X}{\lambda}]} = \frac{\lambda}{n}$$

1

Ora poichè \bar{X} è uno stimatore non distorto di λ e la sua varianza coincide con quella del limite inferiore di Cramer-Rao, allora possiamo concludere che \bar{X} è un UMVUE per $\tau(\lambda) = \lambda$.

6. Dimostrare che le statistiche

$$T_1 = \frac{1}{n} \sum_{i=1}^n 1_{(0)}(X_i)$$

$$T_2 = (\frac{n-1}{n})^{\sum_{i=1}^{n} (X_i)}$$

sono stimatori non distorti di $\tau(\lambda) = e^{-\lambda}$. Determinare un UM-VUE di $\tau(\lambda)$.

$$\begin{split} E[T_1] &= E[\frac{1}{n} \sum_{i=1}^n \mathbf{1}_{(0)}(X_i)] = \frac{1}{n} \sum_{i=1}^n P(X_i = 0) = e^{-\lambda}. \\ E[T_2] &= E[(\frac{n-1}{n})^{\sum_{i=1}^n (X_i)}] = E[(\frac{n-1}{n})^S] = \sum_{s=0}^{+\infty} (\frac{n-1}{n})^s e^{-n\lambda} \frac{(n\lambda)^s}{s!} = e^{-n\lambda} e^{\lambda(n-1)} = e^{-\lambda}. \end{split}$$

Quindi T_1 e T_2 sono due stimatori non distorti per $\tau(\lambda) = e^{\lambda}$. Poichè T_2 è uno stimatore non distorto di $\tau(\lambda) = e^{\lambda}$ ed inoltre è funzione di S statistica sufficiente, allora T_2 è un UMVUE per $\tau(\lambda) = e^{\lambda}$.

7. Calcolare il limite inferiore di Cramer-Rao per lo stimatore di $e^{-\lambda}$. $Var[T] \geq \frac{(-e^{-\lambda})^2}{nE[1+\frac{X^2}{\lambda}-\frac{2X}{\lambda}]} = \frac{\lambda e^{-2\lambda}}{n}$.

Esercizio 2.

Sia $X_1, ..., X_n$ un campione casuale da $f(x, \theta) = \frac{1}{\theta} e^{-x/\theta} 1_{(0,\infty)}(x)$

1. Dimostrare che le statistiche $\hat{\theta_1},...,\hat{\theta_4}$ sono stimatori non distorti di θ e calcolarne gli errori quadratici medi relativi $MSE(\hat{\theta}_i)$.

$$\hat{\theta}_1 = X_1; \ \hat{\theta}_2 = \frac{X_1 + X_2}{2}; \ \hat{\theta}_3 = \frac{X_1 + 2X_2}{3}; \ \hat{\theta}_4 = \bar{X}$$

$$E[\hat{\theta}_1] = E[X_1] = \int_0^{+\infty} x \frac{1}{\theta} e^{-x/\theta} dx = \theta$$

$$E[\hat{\theta}_1] = E[X_1] = \int_0^{+\infty} x \frac{1}{\theta} e^{-x/\theta} dx = \theta$$

$$E[\hat{\theta}_2] = E[\frac{X_1 + X_2}{2}] = \frac{1}{2}E[X_1] + \frac{1}{2}E[X_2] = \theta$$

$$E[\hat{\theta}_3] = E[\frac{X_1 + 2X_2}{3}] = \frac{1}{3}E[X_1] + \frac{2}{3}E[X_2] = \theta$$

$$E[\hat{\theta_4}] = E[\bar{X}] = \theta$$

Quindi $\hat{\theta}_1, ..., \hat{\theta}_4$ sono stimatori non distorti di θ .

2. Dimostrare che $\hat{\theta}_4$ è una statistica sufficiente e trovare l' UMVUE per θ .

La distribuzione appartiene alla famiglia esponenziale infatti:

$$\prod_{i=1}^{n} (x_i, \theta) = (\frac{1}{\theta})^n e^{-\frac{1}{\theta} \sum_{i=1}^{n} x_i} \prod_{i=1}^{n} 1_{0,\infty}(x_i)$$

The distribution apparation and taking the esponential interior
$$\prod_{i=1}^{n}(x_i,\theta)=(\frac{1}{\theta})^n e^{-\frac{1}{\theta}\sum_{i=1}^{n}x_i}\prod_{i=1}^{n}1_{0,\infty}(x_i)$$
 Per cui si ha che $S=\sum_{i=1}^{n}X_i$ è una statistica sufficiente. Per la disuguaglianza di Cramer-Rao si ha:
$$Var[T]\geq \frac{1}{nE[(-\frac{1}{\theta}+\frac{X}{\theta^2})^2]}=\frac{1}{nE[\frac{1}{\theta^2}+\frac{X^2}{\theta^4}-\frac{2X}{\theta^3}]}=\frac{1}{\frac{n}{\theta^2}}=\frac{\theta^2}{n}$$

Poichè $\hat{\theta_4}$ è uno stimatore non distorto di θ e la sua varianza

coincide con il limite inferiore di Cramer-Rao, infatti $Var[\theta_4] =$ $\frac{\theta^2}{n}$, si ha che $\hat{\theta}_4$ è un UMVUE per $\tau(\theta) = \theta$.

3. Trovare un UMVUE per $Var(X_i)$.

 $Var[X_i] = E[X_i^2] - E[X_i]^2 = 2\theta^2 - \theta^2 = \theta^2$

Scegliamo come possibile stimatore di θ^2 , \bar{X}^2

Poichè è distorto infatti:

$$E[\bar{X}^2] = Var[\bar{X}] - E[\bar{X}]^2 = \theta^2(\frac{1}{n} + 1)$$

lo correggiamo e poniamo: $T_{\hat{\theta^2}} = \frac{n}{n-1} \dot{\bar{X}}^2$.

Adesso $T_{\hat{\theta}^2}$ è uno stimaotre non distorto di θ^2 ed inoltre è funzione si $S = \sum_{i=1}^n X_i$, statistica sufficiente trovata al punto (2) dell'esercizio, quindi concludiamo che $T_{\hat{\theta^2}}$ è un UMVUE di $\tau(\hat{\theta}) = \theta^2$.

Esercizio 3.

Sia $X_1, ..., X_n$ un campione casuale da:

 $f(x,\theta) = \theta x^{\theta-1} 1_{(0,1)}(x), \ \theta > 0.$

1. Trovate lo stimatore di massima verosimiglianza di $\mu = \frac{\theta}{1+\theta}$.

 $L(\theta) = \prod_{i=1}^{n} f(x_i, \theta) = \prod_{i=1}^{n} \theta x_i^{\theta-1} 1_{(0,1)}(x_i) = \theta^n \prod_{i=1}^{n} x_i^{\theta-1} 1_{(0,1)}(x_i)$ Passando al logaritmo si ottiene:

$$log L(\theta) = nlog \theta + (\theta - 1) \sum_{i=1}^{n} log x_i + \sum_{i=1}^{n} log 1_{(0,1)}(x_i)$$

Derivando in θ otteniamo:

$$\frac{\partial}{\partial}logL(\theta)=\frac{n}{\theta}+\sum_{i=1}^{n}logx_{i}=0$$
da cui: $\hat{\theta}=-\frac{n}{\sum_{i=1}^{n}}logX_{i}$

Per cui invertendo la funzione, si ha che lo stimatore di μ è:

$$\hat{M} = \frac{-n}{\sum_{i=1}^{n} log X_i - n}.$$

2. Trovate una statistica sufficiente.

La distibuzione appartiene alla famiglia esponenziale infatti:

$$\prod_{i=1}^{n} f(x_i, \theta) = \theta^n e^{(\theta-1)\sum_{i=1}^{n} \log x_i} \prod_{i=1}^{n} 1_{(0,1)} (x_i)$$

 $\prod_{i=1}^{n} f(x_i, \theta) = \theta^n e^{(\theta-1)\sum_{i=1}^{n} \log x_i} \prod_{i=1}^{n} 1_{(0,1)}(x_i)$ Per cui $S = \sum_{i=1}^{n} \log X_i$ è una statistica sufficiente.

3. C' è una funzione di θ per la quale esiste uno stimatore non distorto la cui varianza coincide con il limite inferiore di Cramer-Rao? Dalla disuguaglianza di Cramer-Rao si ottiene:

$$Var[T] \ge \frac{1}{nE[(\frac{1}{\theta} + logX)^2]} = \frac{1}{nE[\frac{1}{\theta^2} + log^2X + \frac{2}{\theta}logX]}$$

Calcoliamo quindi la distribuzione di Y = -logX

Calconanio quindi la distribuzione di
$$Y = -log X$$
 $P(Y \le y) = P(-log X \le y) = P(X \ge e^{-y}) = \int_{e^{-y}}^{1} x \theta x^{\theta - 1} = \frac{\theta}{\theta + 1} (1 - e^{-y(\theta + 1)})$

La densità è:
$$f_Y(y) = \frac{d}{dy} F_Y(y) = \theta e^{-\theta y} 1_{(0,+\infty)}(y)$$
.

Per cui $Y \sim Exp(\theta)$.

Allora
$$Var[T] \ge \frac{1}{nE\left[\frac{1}{\theta^2} + \log^2 X + \frac{2}{\theta} \log X\right]} = \frac{1}{nE\left[\frac{1}{\theta^2} + Y^2 - \frac{2}{\theta}Y\right]} = \frac{\theta^2}{n}$$
. Ora sia

$$Z = \frac{Y}{n}, \sum_{i=1}^{n} Z_i \sim \Gamma(n, n\theta)$$
 infatti:

$$Z = \frac{Y}{n}, \sum_{i=1}^{n} Z_{i} \sim \Gamma(n, n\theta) \text{ infatti:}$$

$$P(Z \leq z) = P(\frac{Y}{n}) \leq z) = P(Y \leq nz) = \int_{0}^{nz} \theta e^{\theta x} dx = \int_{0}^{z} \theta e^{-\theta ny} dy$$
Avendo effettuato il cambio di variabili $x = ny$.

Quindi $Z \sim Exp(n\theta)$ da cui $Z^{*} = \sum_{i=1}^{n} Z_{i} \sim \Gamma(n, n\theta)$.

Quindi
$$Z \sim Exp(n\theta)$$
 da cui $Z^* = \sum_{i=1}^n Z_i \sim \Gamma(n, n\theta)$

$$E[Z^*] = \frac{1}{\theta}$$

$$Var[Z^*] = \frac{1}{n\theta^2}$$

Osserviamo quindi che Z^* è uno stimatore non distorto di $\frac{1}{\theta}$, dalla disuguaglianza di Cramer-Rao si ha:

$$Var[T] \ge \frac{\left(\frac{1}{\theta^2}\right)^2}{\frac{n}{\theta^2}} = \frac{1}{n\theta} = Var[Z^*].$$

 $Var[T] \geq \frac{(\frac{1}{\theta^2})^2}{\frac{n}{\theta^2}} = \frac{1}{n\theta} = Var[Z^*].$ Quindi una funzione del parametro θ per la quale esiste uno stimatore non distorto che raggiunge il limite inferiore di Cramer-Rao è $\frac{1}{\theta}$.

4. Trovate l'UMVUE di θ e di $\frac{1}{\theta}$.

Troviamo ora l'UMVUE per θ , cerchiamo quindi uno stimatore

non distorto di
$$\theta$$
:
$$E[\hat{\theta}] = \int_0^{+\infty} \frac{1}{x} \frac{(n\theta)^n}{\gamma(n)} x^{n-1} e^{-n\theta x} dx = n\theta \frac{\Gamma(n-1)}{\Gamma(n)} = \frac{n}{n-1} \theta.$$

Lo correggiamo: $\hat{\theta}^* = \frac{n-1}{n}\hat{\theta}$ è quindi lo stimatore non distorto di θ ed essendo funzione della statistica sufficiente S trovata al punto (2), concludiamo che $\hat{\theta}^*$ è l'UMVUE di θ .